1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
|
#include "./controller.h"
#include "./net/server.h"
#include <pthread.h>
typedef struct {
conn_t* conn;
pthread_t tid;
int procs;
} controller_conn_t;
enum {
TASK_STATUS_QUEUED,
TASK_STATUS_EXECUTING,
TASK_STATUS_FINISHED,
TASK_STATUS_RETURNED,
};
typedef struct {
int id;
int status;
size_t task_size;
const char* task;
controller_conn_t* worker;
const char* response;
size_t response_size;
} controller_task_t;
typedef struct {
server_t* srv;
pthread_mutex_t mutex;
pthread_t tid;
int awaited;
size_t min_conn;
size_t max_conn;
size_t active_conn;
controller_conn_t* connections;
controller_task_t* tasks;
size_t tasks_len;
size_t tasks_cap;
} controller_t;
controller_t* cntr = NULL;
void controller_init(const char* srv_addr, const char* srv_port, int min_conn, int max_conn) {
if (cntr != NULL) {
fprintf(stderr, "[controller_init] Controller has already been initialized\n");
exit(EXIT_FAILURE);
}
cntr = calloc(1, sizeof(*cntr));
cntr->min_conn = min_conn;
cntr->max_conn = max_conn;
cntr->connections = calloc(max_conn, sizeof(*cntr->connections));
pthread_mutex_init(&cntr->mutex, NULL);
cntr->srv = server_init_tcp(srv_addr, srv_port);
}
void controller_finish() {
if (cntr == NULL) {
fprintf(stderr, "[controller_init] Controller hasn't been initialized\n");
exit(EXIT_FAILURE);
}
pthread_mutex_destroy(&cntr->mutex);
// TODO check all active connections
server_shutdown(cntr->srv);
}
char buf[1024 * 1024];
void* controller_conn_thread(void* args) {
controller_conn_t* conn = (controller_conn_t*) args;
while (1) {
size_t sz;
char* data = conn_read(conn->conn, &sz);
if (sz == 0) {
break;
}
if (data[0] == REQUEST_TYPE_GET_TASK) {
if (pthread_mutex_lock(&cntr->mutex) != 0) {
fprintf(stderr, "[check_task_with_status] Unable to call pthread_mutex_lock\n");
exit(EXIT_FAILURE);
}
controller_task_t* task = NULL;
for (size_t i = 0; i < cntr->tasks_len; i++) {
if (cntr->tasks[i].status == TASK_STATUS_QUEUED) {
task = &cntr->tasks[i];
task->status = TASK_STATUS_EXECUTING;
task->worker = conn;
break;
}
}
if (pthread_mutex_unlock(&cntr->mutex) != 0) {
fprintf(stderr, "[check_task_with_status] Unable to call pthread_mutex_unlock\n");
exit(EXIT_FAILURE);
}
if (task == NULL) {
free(data);
conn_write(conn->conn, NULL, 0);
continue;
}
memcpy(buf, &task->id, sizeof(task->id));
memcpy(buf + 16, task->task, task->task_size);
conn_write(conn->conn, buf, 16 + task->task_size);
free(data);
} else if (data[0] == REQUEST_TYPE_PUT_RESULT) {
int id = *((int*) (data + 4));
if (pthread_mutex_lock(&cntr->mutex) != 0) {
fprintf(stderr, "[controller_thread] Unable to call pthread_mutex_lock\n");
exit(EXIT_FAILURE);
}
controller_task_t* task = NULL;
for (size_t i = 0; i < cntr->tasks_len; i++) {
if (cntr->tasks[i].id == id) {
task = &cntr->tasks[i];
task->status = TASK_STATUS_FINISHED;
task->response = data + 16;
task->response_size = sz - 16;
break;
}
}
if (task == NULL) {
fprintf(stderr, "[controller_thread] unknown task id\n");
exit(EXIT_FAILURE);
}
if (pthread_mutex_unlock(&cntr->mutex) != 0) {
fprintf(stderr, "[controller_thread] Unable to call pthread_mutex_unlock\n");
exit(EXIT_FAILURE);
}
conn_write(conn->conn, NULL, 0);
} else {
conn_close(conn->conn);
}
}
conn_close(conn->conn);
return NULL;
}
int controller_has_task_with_status(int status) {
if (pthread_mutex_lock(&cntr->mutex) != 0) {
fprintf(stderr, "[check_task_with_status] Unable to call pthread_mutex_lock\n");
exit(EXIT_FAILURE);
}
int ret = -1;
for (size_t i = 0; i < cntr->tasks_len; i++) {
if (cntr->tasks[i].status == status) {
ret = i;
break;
}
}
if (pthread_mutex_unlock(&cntr->mutex) != 0) {
fprintf(stderr, "[check_task_with_status] Unable to call pthread_mutex_unlock\n");
exit(EXIT_FAILURE);
}
return ret;
}
const int SLEEP_INT = 1000;
void* controller_loop(void* args) {
args = (void*) args;
while (1) {
if (cntr->awaited && (controller_has_task_with_status(TASK_STATUS_QUEUED) == -1)) {
break;
}
controller_conn_t* conn = NULL;
for (size_t i = 0; i < cntr->max_conn; i++) {
if (cntr->connections[i].conn == NULL) {
conn = &cntr->connections[i];
}
}
if (conn == NULL) {
usleep(SLEEP_INT);
continue;
}
conn_t* new_conn = server_try_accept(cntr->srv);
if (new_conn == NULL) {
usleep(SLEEP_INT);
continue;
}
conn->conn = new_conn;
int ret = pthread_create(&conn->tid, NULL, controller_conn_thread, conn);
if (ret != 0) {
fprintf(stderr, "[controller_start] Unable to start connection thread\n");
exit(EXIT_FAILURE);
}
}
for (size_t i = 0; i < cntr->max_conn; i++) {
if (cntr->connections[i].conn != NULL) {
int ret = pthread_join(cntr->connections[i].tid, NULL);
if (ret != 0) {
fprintf(stderr, "[controller_start] Unable to join connection thread\n");
exit(EXIT_FAILURE);
}
}
}
return NULL;
}
void controller_start() {
int ret = pthread_create(&cntr->tid, NULL, controller_loop, NULL);
if (ret != 0) {
fprintf(stderr, "[controller_start] Unable to start controller in second thread\n");
exit(EXIT_FAILURE);
}
}
void controller_wait() {
cntr->awaited = 1;
int ret = pthread_join(cntr->tid, NULL);
if (ret != 0) {
fprintf(stderr, "[controller_wait] Unable to join controller thread\n");
exit(EXIT_FAILURE);
}
}
int controller_yield_task(const char* data, size_t size) {
if (pthread_mutex_lock(&cntr->mutex) != 0) {
fprintf(stderr, "[yield_task] Unable to call pthread_mutex_lock\n");
exit(EXIT_FAILURE);
}
if (cntr->tasks_cap == cntr->tasks_len) {
cntr->tasks = realloc(cntr->tasks, sizeof(*cntr->tasks) * (cntr->tasks_cap == 0 ? 1 : cntr->tasks_cap) * 2);
cntr->tasks_cap = (cntr->tasks_cap == 0 ? 1 : cntr->tasks_cap) * 2;
}
controller_task_t* task = &cntr->tasks[cntr->tasks_len];
task->id = ++cntr->tasks_len;
task->task = data;
task->task_size = size;
task->status = TASK_STATUS_QUEUED;
if (pthread_mutex_unlock(&cntr->mutex) != 0) {
fprintf(stderr, "[yield_task] Unable to call pthread_mutex_unlock\n");
exit(EXIT_FAILURE);
}
return task->id;
}
int controller_get_result(const char** res, size_t* size) {
int ret = controller_has_task_with_status(TASK_STATUS_FINISHED);
if (ret == -1) {
*res = NULL;
*size = 0;
return ret;
}
if (pthread_mutex_lock(&cntr->mutex) != 0) {
fprintf(stderr, "[yield_task] Unable to call pthread_mutex_lock\n");
exit(EXIT_FAILURE);
}
*res = cntr->tasks[ret].response;
*size = cntr->tasks[ret].response_size;
cntr->tasks[ret].status = TASK_STATUS_RETURNED;
ret = cntr->tasks[ret].id;
if (pthread_mutex_unlock(&cntr->mutex) != 0) {
fprintf(stderr, "[yield_task] Unable to call pthread_mutex_unlock\n");
exit(EXIT_FAILURE);
}
return ret;
}
|